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ABSTRACT

Evolved active vision control systems have the ability to 

extract relevant information from an environment in 

order to solve a specific task [1]. This work has the 

objective to investigate an obstacle avoidance and 

navigation systems for space exploration rovers capable 

of performing autonomous tasks in challenging 

planetary terrains. The paper presents an evolutionary 

robotics approach applied to a Mars rover model that is 

equipped with an active vision camera and a neural 

network control system. Preliminary experimental 

results suggest that such an active vision system 

provides a powerful and yet computationally cheap way 

of developing important visual processing strategies to 

navigate in the environment.  

 

1.    INTRODUCTION 

In the near future, autonomous robots are expected to be 

the principal actors in the exploration of Solar System 

planets. The difficulties of planning a human mission 

and the distances that separate the Earth from the other 

planets require the design of robots capable of operating 

autonomously for the majority of the time. Nowadays, 

the time delay that affects the communication between 

the Earth and other Solar System planets makes 

autonomous robot exploration the only feasible way to 

shed light on the mysteries of deep space planets.   

After the successful mission of the Mars Pathfinder in 

which the first semi-autonomous vehicle explored the 

Martian surface, other missions to Mars have been 

programmed and lunched. In 2004 rovers Spirit and 

Opportunity landed on Mars and, besides the planned 

operation time of 90 days, they are still exploring the 

Martian surface after five years [2]. In the light of Spirit 

and Opportunity‟s successes, other robotics missions are 

planned both from NASA and ESA. NASA MSL (Mars 

Science Laboratory) and ESA ExoMars projects are 

based on rovers able to navigate autonomously on the 

surface and provided with scientific instruments that 

allow a number of analyses on Martian terrain and 

atmosphere.    

Navigation and obstacle avoidance behaviors in Spirit 

and Opportunity are accomplished through a set of 

stereo cameras. In particular, the robots are equipped 

with three sets of stereo camera pairs. One pair is 

looking forward, below the solar panel in front. Another 

pair is looking backward, below the solar panel in the 

back, and the last pair is placed on the mast. With the 

images taken by the cameras, a stereo algorithm 

calculates the 3D representation of the terrain in front of 

the robot and other algorithms are used to calculate a 

“traversability” map [3]. Information from the cameras 

is used to create a grid-type traversability map based on 

the terrain around the robot. This map, in turn, is used to 

plan the next action of the robot.  

Besides the techniques actually used on Spirit and 

Opportunity, there is plenty of research on navigation 

and obstacle avoidance for autonomous robots that 

relies on visual information and that can be relevant for 

spatial exploration. For instance, a well studied method 

is the “arcs approach” [4][5]. In the arcs approach, after 

the construction of the 3D representations from the 

cameras, an algorithm is devoted to generate several 

candidate arcs for steering the robots on the terrain. 

After a comparison between different arcs, one of the 

arcs is chosen on the basis of specific criteria (i.e. the 

arc with the largest clearance or, after calculating the 

costs along each arc, the one with the lowest cost is 

selected) and the robot is finally steered along the 

winning arc. 
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2.  FEATURE SELECTION AND ACTIVE VISION 

The methodologies described above rely on a 3D 

representation of the entire scene captured by the stereo 

cameras. The construction of the 3D scene requires 

extremely demanding computation. Given the limited 

energy supply and computational power that is often 

available to robots devoted to planetary exploration, the 

process of creating the entire 3D representation of the 

environment is one of the factors that significantly 

affect the navigation performance of the robot.  

At the basis of this approach there is the idea that 

perception mainly consists in the internal construction 

of a detailed representation of the external world, e.g. 

[6]. According to this view, the main challenge is to 

transform egocentric, incomplete, and noisy sensory 

information into allocentric, complete, and precise 

representations of the external environment. To achieve 

this goal in vision, for example we face the problem of 

inferring the 3D arrangement of the scene from 2D 

images. This explains the importance of relying on 

stereo cameras. Motor behavior (i.e. the interaction with 

the external world) is not viewed as a resource for the 

robot, but rather as a problem to be controlled. The 

result of the perceptual process, in fact, should be as 

independent as possible from the behavior displayed by 

the robot during the collection of sensory data. 

Starting from a different perspective, the active 

perception approach [7][8] assumes that the world can 

be viewed as its own external representation, and 

perception consists in mastering the regularities arising 

from sensory-motor interactions. From this point of 

view, perception is a way of acting, as pointed out by 

O‟Reagan [9]. Active vision, i.e. the application of the 

active perception approach to vision, consists in the 

process of sequentially analyzing only parts of the 

visual scene, rather than the entire scene [10][11]. This 

approach can simplify the computation involved in 

vision processing, by reducing the information load and 

by selecting only characteristics of the visual scene that 

are relevant for a  given task [1][12][13]. 

In the same vein, visual processes implied in vision-

based navigation can be significantly simplified by 

creating a system which is able to select and pay 

attention only to a reduced set of relevant environmental 

features. However, the combination of active vision and 

feature selection is a field still largely unexplored. The 

dominant approach in computer vision generally 

consists of a defining set of predefined features which 

are exploited by an active vision system [14][15]. It is 

interesting to note that the majority of these models do 

not take into account that the types of visual features 

depend also on the sensory-motor and behavioural 

characteristics of the organism in its environment [16]. 

The co-development of active vision and feature 

selection has been especially explored by the 

Evolutionary Robotics approach, which consists of 

encoding the parameters of a neural system 

(architecture, connection weights, time constants, sensor 

position, etc.) of a robot into an artificial genome, and 

evolve a population of such genomes according to a 

fitness function [17]. For example, Harvey et al. 

evolved an evolutionary active vision system in which 

sensory and neural morphology for a robot have been 

evolved for discriminating a triangle and a square [18]. 

More recently, Floreano et al. described a set of 

experiments in which the same neural architecture has 

been implemented on different active vision systems (an 

artificial retina, a wheeled robot and a virtual car) [13]. 

These experiments showed that such a system was able 

to exploit active vision for selecting the relevant 

features in the environment in order to accomplish an 

adaptive task.      

In this paper we will use an evolutionary active vision 

system for a rover navigation task in unknown 

environments. The architecture of the control system 

described here is based upon the work initially explored 

in Floreano et al. [13].  

3.   METHOD 

As we have mentioned before, our approach is based on 

evolutionary robotics (ER). The ER approach 

emphasizes agent‟s embodiment, which means that an 

emerging behavior is not only dependent on various 

properties of the actual robot such as its size, speed, 

degrees of freedom, sensors and actuators, but also on 

the environment with which a robot interacts [19]. ER is 

an excellent technique that allows us to create artificial 

control systems that autonomously develop their skills 

in close interaction with the environment and that 

exploit very simple, but extremely powerful sensory-

motor coordination [20].   

3.1. The rover  

The robot used in this experiment is a 3D simulated 

model of the MSL rover. The model cannot be 

considered as a trustful and detailed representation of 



the actual rover, but only an approximate copy. This is 

mainly due to the lack of information on the rover‟s real 

dimensions, weights and sizes of different parts, as well 

as of many other design details. According to Centre 

National d'Etudes Spatiales [21], the dimensions of the 

real rover are 2900Lx2700Wx2200H mm and its weight 

is about 775 kg. The physical rover model was therefore 

built considering these details and several diagrams and 

pictures that were available. These limitations are not 

crucial in this study, as at this stage we want to 

demonstrate that it is possible to use an ER approach 

and a simple sensory setup to develop a suitable active 

vision controller able to handle complex obstacle 

avoidance tasks in unknown rough terrains.  

 
Figure 1. 3D physics model of the rover highlighting different 

parts of the rocker-bogie suspension system. 

 
Figure 2. Example of the vision system of the robots, which 

consists in a 5x5 matrix of foveal cells whose receptive fields 

receive input from a gray level image of a limited area (100x100 

pixels) of the whole image. The entire image is 640x480 pixels. 

The motor system of the rover model (see Fig. 1a) 

consists of six wheels, where two front and two rear 

wheels are able to turn up to 90° to either side. The 

rover is capable of overcoming obstacles that are 

approximately of the size of its wheels. This is possible 

thanks to a rocker-bogie suspension system. This 

advanced suspension system is designed to be operated 

at low speed, and consists of two pivotal joints 

connecting two bogies with two rockers [22]. The 

rockers are connected together via a differential join. 

This means the left and right part of the rocker-bogie 

system can move independently while keeping the main 

body levelled. 

The rover is equipped with an active vision camera that 

has two degrees of freedom (pan and tilt). This camera 

was positioned at the top of the rover, approximately 2.2 

metres above ground, and is able to turn within 45° on 

the vertical and 22.5° on the horizontal axis. 

 3.2 System architecture and parameters 

The active vision system is based on a discrete-time 

recurrent artificial neural network (ANN) (Fig. 3). The 

recurrent connections are implemented using 4 memory 

units that maintain a copy of the activations of output 

units at the previous sensory-motor cycle [23]. A set of 

25 visual neurons receive the activation from an 

artificial retina composed of a 5x5 matrix of visual 

(foveal) cells whose receptive fields receive input from 

a gray level image of a limited area (100x100 pixels) of 

the whole image (640x480 pixels) (Fig. 2). Foveal 

activations together with the proprioceptive information 

(motor speed, steering and pan/tilt positions) are fed 

into the neural network. Both visual and proprioceptive 

neurons are fully connected to 4 output neurons that 

modulate the level of force which is applied to the 

actuators directly being responsible for the rover‟s 

speed, steering and direction of the camera. The output 

neurons have a sigmoid activation function with [0, 1]. 

Biases are implemented as weights from input neurons 

with activation values set to -1. The ANN does not have 

a hidden layer, as our previous experiments showed that 

it was redundant and did not help to achieve higher 

fitness [24]. This simple architecture greatly reduces the 

computational demand of the control system, which is 

one of the most important requirements for designing a 

planetary rover. 

The rover‟s motor actions depend on the value of the 

synaptic weights of the ANN. A genetic algorithm was 

used to evolve the weights. The free parameters that 

constitute the genotype of the control system, and that 

are subject to evolution, consist of: 136 synaptic 

weights (100 synaptic weights that connect the 25 

retinal neurons to the 4 motors neurons, 4 

proprioceptive and 4 memory neurons that connect to 

the output neurons, plus 4 biases). Weights and biases 

are encoded as floating point values in the range [-5, 5]. 



 

Figure 3. Neural architecture of the active vision system.  

In our experiments we used a population size of 100 

individuals, where the best 20 individuals were allowed 

to produce 5 offspring each with a mutation probability 

of 10% (a mutation occurs by adding to the original 

gene‟s value a quantity in the range [-3, 3]). The only 

exception was the first offspring of the best individual, 

which was copied to the next generation without 

mutation (elitism). This produced a new generation of 

100 individuals that inherit their genes from the best 

individuals of the previous generation. The whole 

evolutionary process lasted 100 generations. At every 

generation, each control system was tested 5 times by 

deploying the ANN in the rover (randomly positioned 

and rotated) and allowing it to act in the environment 

for up to 10000 sensory-motor cycles (i.e. 10000 

activations of the ANN). The evaluation of a particular 

genotype was terminated when a rover fell into a hole or 

crashed into an obstacle. Five evolutionary runs were 

conducted starting from different randomly initialized 

populations. 

The performance of every single control system was 

evaluated according to the fitness function (1) that was 

carefully designed to shape the behavior of the robot for 

effective and reliable exploration and obstacle 

avoidance: 

                                                   (1)   

where the fitness F is a function of the measured speed 

Sp, steering angle St and steering bonus Bs , with each 

of these parameters is in the range [0,1]. Speed Sp is 1 

when the rover goes at the maximum speed and 0 when 

it does not move or goes backward. Steering angle St is 

1 when wheels are straight and 0 when they are turned 

over an angle of 30° from the centre. If for example the 

angle was 15° then St would be 0.5. T is the number of 

trials (5 in these experiments) and S is the number of 

sensory-motor cycles per trial (10000). The steering 

bonus Bs is 1 if the steering position changed since the 

last time step and 0 if not. The GA has to maximize the 

fitness by increasing the value of Sp, St and Bs, which 

implies that a rover has to move at a maximum possible 

speed while steering only when necessary. If a rover 

goes forward at the maximum speed but keeping the 

steering angle over 30° then its final fitness will be 0. 

Similarly, if a rover goes backwards or does not move at 

all, its fitness will also be 0 regardless the steering 

angle. The maximum fitness contribution at each time 

step is therefore 1/(S*T). The final fitness of each 

individual is in a range [0, 1] and it is the sum of all 

contributions from all time steps of all trials. 

Figure 4. Environment used during all of the evolutionary runs 

In order to evolve a good controller, it was necessary to 

create a suitable environment to allow the robot to 

experience different conditions (see Fig. 4). The 

environment is an arena of 60x60m and contains 

inclined and declined surface, three high and three small 

rocks, holes and rough areas. 111 m2 of the terrain is 

covered by obstacles and hence not traversable. 

4. EXPERIMENT RESULTS 

The results obtained from all five evolutionary 

experiments show that an effective behavior emerged in 

all replications. Evolved robots can navigate the 

environment with a certain degree of efficacy and are 

able to avoid obstacles of different types by relying on 

the active vision system. The chart in Fig. 5 shows the 

averaged results for the five evolutionary runs. The dark 

grey line shows the maximum fitness reached by the 



best robots for every generation and the light grey line 

shows the average fitness of the population. 

 

Figure 5. Maximum and average fitness obtained by the robots 

during the evolution (average of 5 replications). Note that, 

according to equation (1), the fitness can never reach 1.0 as the 

rover needs to turn and decrease its speed to avoid obstacles. 

In order to understand the evolved behavior, analyses 

focused on the vision and camera movements, taking 

into account their mutual integration and their 

interaction with the robot‟s steering. The analyses were 

performed to verify the hypothesis that the evolved 

active vision system is able to respond to particular 

features that are common in the environment. The best 

individual of all the five repetitions were used in all 

tests. Two different types of analysis were carried out: 

Original Environment Test, using the same environment 

of the evolution experiments, and the Artificial 

Environment Test using two new environments 

specifically configured to better highlight certain 

properties of the behaviour and to quantitatively 

confirm the observations made during the first test. 

 
 

Figure 6. Shows the three accumulated patters, i.e. the average 

of the recorded images, which affect (a) pan, (b) tilt and (c) 

steering, respectively. 

4.1 Original Environment Test 

(a) In this test, each best evolved individual was 

left free to move in the environment for 106 

(one million) time steps, during which the 

visual input was recorded and then analysed. 

The three images above (Fig. 6 (a), (b) and (c)) 

are the result of accumulation of retinal inputs 

saved every time the rover used the camera 

pan, the tilt or when it significantly steered. 

This was done by comparing previous join 

positions with current positions and if the 

difference was over 3° the image was saved. 

(b) Camera Pan 

In the case of camera pan, as can be seen in Fig. 6a, 

the receptive pixels that affect the camera seem to 

form a triangular pattern with the highest sensitivity 

in the bottom right corner, and gradually decreasing 

in intensity towards the top left corner. This pattern 

is mostly present when the rover moves the camera 

horizontally, in the presence of rocks in its field of 

view.  

(c) Camera Tilt  

In the case of camera tilt, the image in Fig.(6b) 

shows two interesting features. The first is again a 

triangular gradient spreading from the bottom left 

corner and reaching the top right corner. The 

second feature, which is also the most apparent, 

shows a clear horizontal orientation which is 

noticeable from the three bottom lines with the 

strongest intensity in the middle. The rover appears 

to be using the vertical camera movements mostly 

when it detects holes. From the observation of the 

behaviour, the rover uses the tilt for at least two 

reasons. One is to fixate the camera on a feature 

and keep it in the field of view so that it can later 

avoid it. The other is to use tilt for distance 

estimation as the analysis showed that even when 

the retinal input remained approximately the same, 

changes in steering occurred. The tilt and the 

memory integration were the only factors that could 

influence the steering in this scenario. Further 

details on this topic will be given in the next 

section. 

(d) Steering 

The image in Fig. 6c, recorded when the robot 

steers, displays horizontal and vertical lines 

suggesting that the retina is sensitive to different 

features in the environment as none of the obstacles 

seem to have this type of shape. This image appears 

to be an accumulation of at least two different 

features over time. One is the hole, which is 

reflected by the horizontal line. The other seems to 

be an edge of a rock or a cliff, shown as a vertical 

line. By considering that the steering is the 

(a)                         (b)                         (c) 



behaviour that actually allows the rover to avoid an 

obstacle, it is probable that the recorded 

accumulation pattern is the results of a mixture of 

the pan and tilt activation pattern.    

In addition to these analyses, the trajectory and the 

visual input were analysed for a period of 50000 time 

steps. Figure 7 shows the results of a qualitative analysis 

which examined the association between visual input 

and changes in steering, where the superimposed retinal 

images correspond to critical points in obstacle 

avoidance. As we can clearly see from the figure, 

different visual patters are produced by different 

obstacles. The first and second images on the right of 

the picture show the pattern related to a hole, at the 

moment in which the rover is about to avoid it. 

 
Figure 7. Trajectory and visual inputs from crucial obstacle 

avoidance manoeuvres. 

The pattern is horizontally oriented and the boundaries 

between the ground and the hole are clearly visible. The 

third and the fourth images are related to rocks. In this 

case the visual pattern is rather uniform all over the 

retina and no clear boundaries are present. In the fourth 

image it is possible to notice the vertical orientation of 

the pattern, in contrast with the horizontal one produced 

by the hole.     

4.2 Artificial environment test 

In the following test the ability of the robot to use vision 

for avoiding obstacle has been tested in relation to the 

active movement of the camera. Two different types of 

test scenarios were designed for this test (Fig. 8): 

 Rock-type obstacle test scenario. The individual is 

located in front of a rock obstacle placed at the 

center of the environment.  

 Hole-type obstacle test scenario. The individual is 

set in front of a hole obstacle. 

In both cases the number of times the robot was able to 

correctly avoid the obstacles were recorded. For each of 

these scenarios, two features of the camera‟s movement 

were used independently, in order to further understand 

the contribution of each of them in the avoiding 

behaviour. In particular, tests were run with the robot 

using only tilt, only pan, or both of these features. Each 

test consisted of 200 steps. 

 (a)  

(b)  

Figure 8. (a) Rock-type and (b) Hole-type obstacle starting 

conditions used for the testing the usage of camera pan and tilt. 

The chart in Figure 9 shows the percentages of 

successful trials in which the robot was able to avoid the 

obstacle, out of the allowed 200 trials. From this test we 

can draw the following conclusions: (i) the robot is able 

to avoid holes better than rocks and (ii) the tilt feature in 

the active vision strategy makes a larger contribution to 

the successful avoidance of obstacles than the pan. Tilt-

only condition shows a higher percentage of success 

than the pan-only condition in both the scenarios 

considered. Moreover, qualitative comparisons of the 

tilt-only and pan-only conditions indicate that pan 

movements are more related to rocks detection than 

holes (see section 4.1), as the performance decay in 

avoiding rock obstacles is greater than the performance 

decay in holes obstacle.    



 

Figure 9. Percentages of successful trials in which the robot 

was able to avoid the obstacle in case of rock-type and hole-

type obstacle and for each of the 3 conditions considered. 

5. DISCUSSION 

Although further analysis and tests would provide a 

clearer picture of the active vision strategy used by the 

evolved agents, from the behavioural analysis and test 

presented here we can try to draw a general description 

of the sensory-motor strategy involved.       

The evolved individuals tested are able to locate and 

track hole-type obstacles better than rocks. This fact, 

however, should be considered in the light of the whole 

evolutionary process. Given that the majority of 

obstacles surrounding the environment are holes, it is 

plausible that a large amount of adaptive pressure 

during the evolution has produced robots more capable 

of avoiding holes, given the higher probability of 

encountering holes than rocks. 

The strategy followed by the rover toward a hole-type 

obstacle is to steer until a low input (black pixels) is in 

the central part of the visual field. This seems to activate 

the tilt of the camera down and the activation of the 

motors for moving forward. Analysis showed that the 

tilting down and moving forward movements were very 

often actuated together when a low input was in the 

central lower part of the visual. This produced an ability 

of the robot to move in parallel to the edges of the holes. 

When the pan movement is inhibited, the rover shows a 

similar behaviour. Even though the robot does not use 

pan very often, this condition prevents the robot from 

achieving a high rate of success in avoiding holes (Fig. 

9). Panning to the right is the most common position of 

the camera. Thus, with the inhibition of the pan 

movement the robot seems not properly „adjusted‟ to the 

situation and makes miscalculations of the hole position. 

This could be explained by the fact that that evolution 

has produced robots that preferably use the steering to 

do panning, instead of the actual camera panning. This 

might be due to the evolution of a simpler vision field 

control. 

Differently than pan, tilt is crucial for the avoidance of 

holes and for the more general navigation ability. Tilt is 

used as a means of determining the distance of holes. 

When the rover tilts the camera down a low output to 

the motors‟ power is produced, so as to reduce the 

speed. On the other hand, when the tilt is sufficient to 

make the camera point to the horizon or above it, the 

rover increases the speed, by making the robot move 

straight. 

In the case of rock-type obstacles, it was evident that the 

rover evolved a better control of the visual field by 

steering, rather than by using the camera‟s pan. Steering 

was used extensively in the process of avoiding rocks. 

In this respect, it is particularly interesting the way in 

which the rover appears to distinguish between rocks 

and holes. The general strategy is as follows: once a low 

value input is detected in the high part of the visual 

field, steering is activated along with tilting down the 

camera. If these actions do not produce a consequent 

low value activation of the input in the middle of the 

vision field, then the obstacle is treated as a rock instead 

of a hole, and the action taken is to increase the steering 

angle. This behaviour is in contrast with the distance-

estimation behaviour in the case of hole-type obstacles. 

In such a case, the tilt down movement maintains low 

value input in the middle of the visual field. This 

indicates a movement towards the hole.  

This type of behaviour closely resembles the action-

perception loop of the sensory-motor strategies 

described in the literature, such as in [8][20][25]. These 

studies were based on different robots, namely a 

khepera wheeled robot, a robotic arm, and a robotic 

hand, respectively. In these cases the robots show a 

sensory-motor behaviour that allows agents to 

disambiguate specific input patterns among a very noisy 

input activation state. This is achieved by acting in the 

environment in such a way to produce a defined 

sequence of input patterns that solely pertains to a 

specific category. The only category that allows the 

robot to produce a given motor sequence is to start from 

the interaction schema actively produced by the robot 

itself (see [9] for a discussion). 



CONCLUSION 

In this paper we have shown that evolutionary robotics 

techniques are feasible for creating effective control 

system for autonomous robots that use active vision for 

navigation purposes. In particular, we showed that 

evolved robots are able to perform a navigation task in a 

complex environment by using active vision for 

distinguishing between different types of obstacles. The 

behavioural strategies displayed by the robots are also 

interesting and make use of a complex action-perception 

loop, despite the simplicity of the neural controller. 

Given the preliminary, yet encouraging results of the 

experiments presented here, we intend to proceed 

toward a better understanding of the active vision 

systems and the evolution of better and robust control 

systems for autonomous rover devoted to spatial 

explorations.  
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